Capacitated Domination and Covering: A Parameterized Perspective
نویسندگان
چکیده
Capacitated versions of Vertex Cover and Dominating Set have been studied intensively in terms of polynomial time approximation algorithms. Although the problems Dominating Set and Vertex Cover have been subjected to considerable scrutiny in the parameterized complexity world, this is not true for their capacitated versions. Here we make an attempt to understand the behavior of the problems Capacitated Dominating Set and Capacitated Vertex Cover from the perspective of parameterized complexity. The original, uncapacitated versions of these problems, Vertex Cover and Dominating Set, are known to be fixed parameter tractable when parameterized by a structure of the graph called the treewidth (tw). In this paper we show that the capacitated versions of these problems behave differently. Our results are: – Capacitated Dominating Set is W[1]-hard when parameterized by treewidth. In fact, Capacitated Dominating Set is W[1]-hard when parameterized by both treewidth and solution size k of the capacitated dominating set. – Capacitated Vertex Cover is W[1]-hard when parameterized by treewidth. – Capacitated Vertex Cover can be solved in time 2 log n where tw is the treewidth of the input graph and k is the solution size. As a corollary, we show that the weighted version of Capacitated Vertex Cover in general graphs can be solved in time 2 log n. This improves the earlier algorithm of Guo et al. [15] running in time O(1.2 2 + n). Capacitated Vertex Cover is, therefore, to our knowledge the first known “subset problem” which has turned out to be fixed parameter tractable when parameterized by solution size but W[1]-hard when parameterized by treewidth.
منابع مشابه
Capacitated Domination: Constant Factor Approximations for Planar Graphs
We consider the capacitated domination problem, which models a service-requirement assigning scenario and which is also a generalization of the dominating set problem. In this problem, we are given a graph with three parameters defined on the vertex set, which are cost, capacity, and demand. The objective of this problem is to compute a demand assignment of least cost, such that the demand of e...
متن کاملCapacitated Domination: Constant Factor Approximation for Planar Graphs
We consider the capacitated domination problem, which models a service-requirement assigning scenario and which is also a generalization of the dominating set problem. In this problem, we are given a graph with three parameters defined on the vertex set, which are cost, capacity, and demand. The objective of this problem is to compute a demand assignment of least cost, such that the demand of e...
متن کاملApproximation Algorithms for the Capacitated Domination Problem
We consider the Capacitated Domination problem, which models a service-requirement assignment scenario and is also a generalization of the well-known Dominating Set problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satis...
متن کاملROMAN DOMINATION: A Parameterized Perspective
We analyze the graph-theoretic formalization of Roman domination, dating back to the military strategy of Emperor Constantine, from a parameterized perspective. More specifically, we prove that this problem is W[2]-complete for general graphs. However, parameterized algorithms are presented for graphs of bounded treewidth and for planar graphs. Moreover, it is shown that a parametric dual of Ro...
متن کاملCapacitated Dominating Set on Planar Graphs
Capacitated Domination generalizes the classic Dominating Set problem by specifying for each vertex a required demand and an available capacity for covering demand in its closed neighborhood. The objective is to find a minimum-sized set of vertices that can cover all of the graph’s demand without exceeding any of the capacities. In this paper we look specifically at domination with hard-capacit...
متن کامل